
Outcome Health

P
ro

pr
ie

ta
ry

 a
nd

 c
on

fid
en

tia
l ©

 2
01

7
O

ut
co

m
e

H
ea

lth

Outcome Health

P
ro

pr
ie

ta
ry

 a
nd

 c
on

fid
en

tia
l ©

 2
01

7
O

ut
co

m
e

H
ea

lth

 Performance Testing
Strategy and Implementation

1

Outcome Health

P
ro

pr
ie

ta
ry

 a
nd

 c
on

fid
en

tia
l ©

 2
01

7
O

ut
co

m
e

H
ea

lth

External Pressures that Start the Conversation

• Sales has told you they have clients in the pipeline
and need to make sure they can be handled

• Existing clients are asking for more
• Need to determine if the current infrastructure can

handle being reduced without affecting users
• Site went down due to load and no one knows what

would keep it from failing again except adding more
hardware

• Transitioning from an old system to a new one
• Start trading bitcoin futures…(CBOE) ;)

2

Outcome Health

P
ro

pr
ie

ta
ry

 a
nd

 c
on

fid
en

tia
l ©

 2
01

7
O

ut
co

m
e

H
ea

lth

First Tendencies

• Solve with hardware
• Ask everyone in the office to use the system and see

what happens
• Let it ride and only react if the system fails
• Find some way to put load on a couple endpoints at

random and call it a day
• Test individual endpoints in isolation
• Blame that thing that is always a problem. The DB is

always slow, language is slow…but do not do
anything.

3

Outcome Health

P
ro

pr
ie

ta
ry

 a
nd

 c
on

fid
en

tia
l ©

 2
01

7
O

ut
co

m
e

H
ea

lth

What Should You Care About?

• Remember why you are in business...it is your customers
• How does a typical user browse your site?
• What does the typical daily usage look like?
• How predictable will be the load increase be?
• What services are in use/how easy is it to scale up/down?
• Does your system understand the difference between test

data and real data?

• Convince the leadership by showing the site can go down
with X users.

– Ideally this can be done on the production environment
off-hours or during a pre-determined maintenance
window.

4

Outcome Health

P
ro

pr
ie

ta
ry

 a
nd

 c
on

fid
en

tia
l ©

 2
01

7
O

ut
co

m
e

H
ea

lth

Setting Expectations

• Performance testing is NOT functional testing
• You need support from developers and devops
• This is not a one time thing, if you care about it now, it will

continue to be a point of concern
• Functional testing gets all the glory, but functionality does not

matter if it does not scale
• Someone has likely tried to performance test in the past

– Find out why it was unsuccessful.
• Explaining what metrics to care about and what it means to

fail performance testing
• Need of an environment that is production-like is important

for quickly iterating on performance

5

Outcome Health

P
ro

pr
ie

ta
ry

 a
nd

 c
on

fid
en

tia
l ©

 2
01

7
O

ut
co

m
e

H
ea

lth

Types of Performance Testing

• Load - Load testing is performed to determine a
system's behavior under both normal and anticipated
peak load conditions

• Stress - activity that determines the robustness of
software by testing beyond the limits of normal
operation

• Soak/Endurance - involves testing a system with a
typical production load, over a continuous availability
period, to validate system behavior under production
use

6

Outcome Health

P
ro

pr
ie

ta
ry

 a
nd

 c
on

fid
en

tia
l ©

 2
01

7
O

ut
co

m
e

H
ea

lth

Identifying Your Typical User

• Data needs to be mined to find out how most users go
through the site
– Google analytics, DB timestamps,

tracking/logging of any kind
– Duration on pages
– Order of browsing

• This is the single most important step in performance
testing!!!

7

Outcome Health

P
ro

pr
ie

ta
ry

 a
nd

 c
on

fid
en

tia
l ©

 2
01

7
O

ut
co

m
e

H
ea

lth

Measurements

• Average, 90th, 95th, 99th percentile response times
• Key is to pick one and stick with it to ensure apples to

apples
• Servers are temperamental and can vary by up to

20% each run. This makes it harder to identify
performance issues, but is a point of education and
consideration when analyzing results.

• Error rates on the calls.
• Transaction rates requests/sec
• I went with <3s response time and <5% error rate.

8

Outcome Health

P
ro

pr
ie

ta
ry

 a
nd

 c
on

fid
en

tia
l ©

 2
01

7
O

ut
co

m
e

H
ea

lth

The Script

• Hardest part is always authentication
• Consistency in the script between runs is vital
• Tool is not as important as you might think
• Image/Asset downloads are not really a concern

(unless you are Google) and can be made a
non-issue through use of CDNs

• Need to only run off-hours if performing the test in
production

• Often hard to produce the amount of load needed
with just one computer

• Tools: JMeter, Gatling, Locust, etc.

9

Outcome Health

P
ro

pr
ie

ta
ry

 a
nd

 c
on

fid
en

tia
l ©

 2
01

7
O

ut
co

m
e

H
ea

lth

Monitoring

• Identify what monitoring is already in place and build
on it

• Logs that include timing
• Focus on transactions that are known or “feel” like

they might take time
• APM (Application Performance Management) is

helpful when starting from nothing. Will point you in
the right direction of what to focus on for low hanging
improvements.
– Examples: New Relic, Data Dog, Dynatrace, etc.

10

Outcome Health

P
ro

pr
ie

ta
ry

 a
nd

 c
on

fid
en

tia
l ©

 2
01

7
O

ut
co

m
e

H
ea

lth

After Test Run

• Gather the developers and devops to review the
results

• Talk about the type of run that happened
• Assist with any input in the logging/output of the

performance testing tool
• Typical culprits: Reflection, queries, missing indexes,

web server settings, firewalls (these types of tests will
set off alarms), ELB ramp-up, etc.

• Identify gaps in monitoring and create alerting

11

Outcome Health

P
ro

pr
ie

ta
ry

 a
nd

 c
on

fid
en

tia
l ©

 2
01

7
O

ut
co

m
e

H
ea

lth

It Works, Now What?

• Performance problems have a nasty habit of showing
up when code is changed

• Treat it the same as functional test automation.
Regular updates, affects the decision to release code
to production, listed as a consideration on new
functionality

• Stand firm on the performance of the application as it
now is just as important as the quality of the features
being delivered

12

